Large scale generation of micro-droplet array by vapor condensation on mesh screen piece

نویسندگان

  • Jian Xie
  • Jinliang Xu
  • Xiaotian He
  • Qi Liu
چکیده

We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corona discharge in the steam for electrostatically enforced condensation

The corona discharge in the steam is investigated theoretically and experimentally in means of implementation with the steam condenser for the improved phase-change rate. The considered phenomena include the nucleation of water vapor on mobile charge carriers, the electrohydrodynamic vapor flow toward the condenser wall and the thermodynamics of the charged micro-droplet. The average size of mi...

متن کامل

Numerical Study of Spherical Vapor Layer Growth Due to Contact of a Hot Object and Water

Vapor film formation and growth due to contact of a hot body and other liquids arise in some industrial applications including nuclear fuel rods, foundry and production of paper. The possibility of a steam explosion remains in most of these cases which could result in injuries and financial damage. Due to the importance of such phenomenon, this study deals with vapor layer forming, growth, and ...

متن کامل

cleate and grow on liquids and liquid impregnated surfaces†

Title: How droplets nucleate and grow on liquids and liquid impregnated surfaces While nucleation is most likely to occur at the liquid–air interface, the liquid viscosity plays a key role in determining the overall growth of droplets. a Condensation on liquids has been studied extensively in context of breath figure templating, materials synthesis and enhancing heat transfer using liquid impre...

متن کامل

A LIGHT SCATTERING INVESTIGATION OF DROPLET GROWTH IN NOZZLE CONDENSATION by

An experimental and theoretical study has been made of the condensation of water vapor (with air carrier) in a supersonic nozzle in order to investigate the possible existence of condensate droplets which are substantially larger than predicted by the standard application of classical condensation theory. Droplet size was measured using light scattering techniques, which when combined with the ...

متن کامل

Subpattern formation during condensation processes on structured substrates

– We investigate the temporal and spatial development of condensation patterns on chemically patterned substrates. We find that droplets condense preferentially on lyophilic sites and are surrounded by a depletion zone where no further nucleation occurs. The size of the depletion zones can be tuned by the flow rate of the incoming gas stream. If the size of the depletion zones is in a suitable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017